Leecode #239 完全平方数
给定正整数 n,找到若干个完全平方数(比如
1, 4, 9, 16, ...
)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。
示例
示例 1:
输入: n = 12
输出: 3
解释: 12 = 4 + 4 + 4.
示例 2:
输入: n = 13
输出: 2
解释: 13 = 4 + 9.
解题思路
dfs和bfs两种,针对这题bfs速度更快不过耗费更多内存
class Solution:
def numSquares(self, n: int) -> int:
arr = [x**2 for x in range(int(n**0.5), 0, -1)]
global count
count = 10000
def dfs(arr, begin, target, num):
global count
if num >= count:
return
if target == 0:
count = num
for i in range(begin, len(arr)):
if arr[i] <= target:
dfs(arr, i, target-arr[i], num+1)
dfs(arr, 0, n, 0)
return count
def numSquares(self, n: int) -> int:
import collections
arr = [x**2 for x in range(int(n**0.5), 0, -1)]
global dq
dq = collections.deque([n])
count = 0
while True:
l = len(dq)
for i in range(l):
value = dq.pop()
for j in arr:
temp = value - j
if temp >0:
dq.appendleft(temp)
elif temp == 0:
return count + 1
count += 1
还有拉格朗日四平方和定理。。只能看看膜一下
class Solution:
def isSquare(self, n: int) -> bool:
sq = int(math.sqrt(n))
return sq * sq == n
def numSquares(self, n: int) -> int:
# Lagrange's four-square theorem
if self.isSquare(n):
return 1
while (n & 3) == 0:
n >>= 2
if (n & 7) == 7:
return 4
sq = int(math.sqrt(n)) + 1
for i in range(1, sq):
if self.isSquare(n - i * i):
return 2
return 3